Syntactic Tree-based Relation Extraction Using a Generalization of Collins and Duffy Convolution Tree Kernel

نویسندگان

  • Mahdy Khayyamian
  • Seyed Abolghasem Mirroshandel
  • Hassan Abolhassani
چکیده

Relation extraction is a challenging task in natural language processing. Syntactic features are recently shown to be quite effective for relation extraction. In this paper, we generalize the state of the art syntactic convolution tree kernel introduced by Collins and Duffy. The proposed generalized kernel is more flexible and customizable, and can be conveniently utilized for systematic generation of more effective application specific syntactic sub-kernels. Using the generalized kernel, we will also propose a number of novel syntactic sub-kernels for relation extraction. These kernels show a remarkable performance improvement over the original Collins and Duffy kernel in the extraction of ACE-2005 relation types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel

This paper proposes to use a convolution kernel over parse trees to model syntactic structure information for relation extraction. Our study reveals that the syntactic structure features embedded in a parse tree are very effective for relation extraction and these features can be well captured by the convolution tree kernel. Evaluation on the ACE 2003 corpus shows that the convolution kernel ov...

متن کامل

Exploring syntactic structured features over parse trees for relation extraction using kernel methods

Extracting semantic relationships between entities from text documents is challenging in information extraction and important for deep information processing and management. This paper proposes to use the convolution kernel over parse trees together with support vector machines to model syntactic structured information for relation extraction. Compared with linear kernels, tree kernels can effe...

متن کامل

A Feature-Enriched Tree Kernel for Relation Extraction

Tree kernel is an effective technique for relation extraction. However, the traditional syntactic tree representation is often too coarse or ambiguous to accurately capture the semantic relation information between two entities. In this paper, we propose a new tree kernel, called feature-enriched tree kernel (FTK), which can enhance the traditional tree kernel by: 1) refining the syntactic tree...

متن کامل

Tree Kernel-Based Relation Extraction with Context-Sensitive Structured Parse Tree Information

This paper proposes a tree kernel with contextsensitive structured parse tree information for relation extraction. It resolves two critical problems in previous tree kernels for relation extraction in two ways. First, it automatically determines a dynamic context-sensitive tree span for relation extraction by extending the widely-used Shortest Path-enclosed Tree (SPT) to include necessary conte...

متن کامل

Relation Extraction Using Convolution Tree Kernel Expanded with Entity Features

This paper proposes a convolution tree kernel-based approach for relation extraction where the parse tree is expanded with entity features such as entity type, subtype, and mention level etc. Our study indicates that not only can our method effectively capture both syntactic structure and entity information of relation instances, but also can avoid the difficulty with tuning the parameters in c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009